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Abstract Composite materials demonstrate a considerable

extent of heterogeneity. A non-uniform spatial distribution

of reinforcement results in variations of local properties of

fibrous laminates. This non-uniformity not only affects

effective properties of composite materials but is also a

crucial factor in initiation and development of damage and

fracture processes that are also spatially non-uniform. Such

randomness in microstructure and in failure evolution is

responsible for non-uniform distributions of stresses in

composite specimens even under externally uniform load-

ing, resulting, for instance, in a random distribution of matrix

cracks in cross-ply laminates. The paper deals with statistical

features of a distribution of carbon fibres in a transversal

cross-sectional area in a unidirectional composite with

epoxy matrix, based on various approaches used to quantify

its microscopic randomness. A random character of the

fibres’ distribution results in fluctuations of local elastic

moduli in composites, the bounds of which depend on the

characteristic length scale. A lattice model to study damage

and fracture evolution in laminates, linking randomness of

microstructure with macroscopic properties, is discussed.

An example of simulations of matrix cracking in a carbon

fibre/epoxy cross-ply laminate is given.

Introduction

Manufacturing fibrous composites inevitably leads to some

heterogeneity of the obtained materials. Their micro-

structural analysis is usually concerned with manufacture-

induced defects such as fibre/matrix debonding, interface

cracks, microvoids, fibre ruptures and kinks, etc. According

to some estimates [1], in any cross-sectional area one tenth

of fibres are broken in the manufacturing process. These

defects not only result in deterioration of material’s prop-

erties but also serve as stress concentrators and, hence,

nuclei of macroscopic fracture initiation. Still, even

neglecting their effect, another source of randomness is

important for many types of laminates, namely, a non-

uniform distribution of their constituents. In uniaxial fibrous

composites the distribution of defects along the fibres and

the variation of their volume fraction are assumed to be two

main factors determining stochasticity in properties of these

composites [2]. The image analysis technique, applied to

cross-sectional areas of T300/914 specimens, demonstrated

a high level of variability: for a composite with an average

volume fraction of fibres 55.9% the minimum and maxi-

mum level of the observed volume fractions were 15% and

85%, respectively [2]. Such a high scatter undermines any

use of schemes, based on ideal periodic or quasi-periodic

arrangement of fibres, to estimate the effective properties

and, especially, failure parameters of such composites. Only

in the case of the effective longitudinal stiffness (in the

direction parallel to the axes of aligned fibres), the effect of

randomness can be neglected for a relatively large size of a

transversal window.

Various attempts were undertaken to quantify random

distributions of fibres and to account for their effect. Some

elements of classification for point patterns, formed by cent-

roids of fibres, were introduced in [3]. There, a second-order
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intensity function, defining a number of points expected to be

situated within a given distance, was suggested as a most

suitable parameter to characterise random sets of fibres in

unidirectional composites.

An account of the random distribution of fibres in uni-

directional composites is implemented mainly numerically,

in terms of representative volume elements (RVE) with

periodic boundary conditions, with RVEs incorporating the

details of microstructure. Here, either real microscopic

images of fibres within some window, directly discretised

into finite elements (see, e.g. [4]), or generated, statistically

equivalent microstructures are used. Various techniques

were suggested to obtain a statistically equivalent ensemble

of fibres (or, more generally, reinforcement). The so-called

random sequential absorption is used in [5] to reproduce

distributions of fibres in a unidirectional composite for an

arbitrary volume fraction in the interval form zero to that

for closest pack triangular structure. Another approach

employs a variable-box Monte Carlo technique to describe

the microstructure of the glass/epoxy unidirectional com-

posite [6]. An alternative way to study the effect of

the volume fraction of fibres on effective properties of

composites with randomly distributed fibres is to use a

so-called multi-particle effective field method [7].

Though finite element simulations of RVEs allow a

detailed study of microstructural aspects of deformation

processes [8] within a single unit cell, the problem of

transferability of the results, obtained for a relatively small

window (normally, with dimensions 100–500 lm), to a

composite component/structure is a non-trivial matter.

Besides, the character of randomness in local distributions

of fibres depends also on the characteristic length size. To

overcome these deficiencies of a single-RVE approach, this

paper presents a lattice model that represent a specimen as

a set of elements, each with its own effective properties,

linked to statistics of the volume fraction of fibres for a

respective scale. The discussion of this model is preceded

by a quantitative study of the effect of the window size on

the randomness in the distribution of fibres in a unidirec-

tional carbon fibre–epoxy composite.

Analysis of microstructure

Statistical approaches

In unidirectional fibrous composites axial variations in the

volume fraction of fibres due to their misalignment are

considerably smaller than those in transversal cross sec-

tions. Hence, a micrograph of a transversal cross-sectional

area of a unidirectional carbon/epoxy composite, contain-

ing a sufficiently large number of fibres, is analysed to

estimate the extent of non-uniformity in the spatial distri-

bution of constituents. The size of the studied window is

345 lm · 250 lm, i.e. its dimensions are larger than the

thickness of a single standard ply in cross-ply laminates

(normally, 120–150 lm); it contains (centroids of) 603

fibres with diameter df = 10 lm.

The analysis is apparently limited to the study of sta-

tistics of fibres since epoxy matrix is an embedding media.

To characterise the spatial randomness of this set of fibres,

various approaches and parameters are applied. The first

step is to analyse a mutual position of the nearest neigh-

bours of fibres in the set (Fig. 1). The graph vividly dem-

onstrates non-uniformity in distribution of fibres, which

becomes more obvious if we also consider histograms of

spacings between fibres (Fig. 2) and orientation of couples

of nearest neighbours (Fig. 3). Here, the spacing between

two fibres means the distance between their centroids

diminished by df. It is apparent that though the majority of

fibres have the spacing less than 1 lm, still a considerable

minority (35%) are separated by a distance larger than that,

in some cases—up to five times.

In terms of orientation, the set of fibres demonstrates its

random character (Fig. 2). But still it could not be con-

sidered as fully random, i.e. isotropic in the transverse

plane (this would correspond to a dashed straight line in

Fig. 2): the maximum density of distribution—for a 10�
band—is 2.6 times higher than the minimum one. Hence,

though there is no obvious anisotropy in the transverse

distribution of carbon fibres in this unidirectional com-

posite, it is not fully transversally isotropic at this scale.

Two other approaches can be used to characterise the

spatial distribution of fibres. The first one is based on the

second-order intensity function [3, 9] that describes an

increase in the average number of fibres (their centroids)

Fig. 1 Position of the nearest neighbours in distribution of fibres in

transversal cross-section
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with the distance r from an arbitrary fibre (its centroid). This

intensity function for the studied area is given in Fig. 4.

Another approach is based on the so-called radial distribu-

tion function that can be derived from the second-order

intensity function [9–11]. The radial distribution function

characterises not only short-range random properties of the

set, as in a study of the pairs of nearest neighbours, but also

its middle- and large-range parameters. Its graph (Fig. 5)

has a typical structure, observed for other fibrous compos-

ites (see, e.g. [11]): a high peak, followed by some fluctu-

ations, and an obvious asymptote of unity for large values of

r, linked with the average spatial density of fibres. The fully

random distributions of points in the plane should have their

radial distributions functions equal to unity for all values of

r. The first peak is linked to the finiteness of the fibres radius

that mean a transition from random statistics of points to

so called hard-core random distributions since no fibre

centroid can be situated closer to the centroid of any fibre

that df.

The next step is to study the effect of the window size on

the type of local randomness in the spatial distribution of

fibres. To implement this, the analysed area of the com-

posite’s transversal cross section is discretised into cells

with dimensions changing from one discretisation to

another, and the volume fraction of fibres is determined for

each cell. This approach is close to the idea of a mesoscale

window that was suggested and applied to random com-

posites in [12, 13] to study the scale dependence of their

effective moduli. Let us notice that in contrast to the

approaches used above, here we deal not with the distri-

butions of centroids of fibres but with an actual part of the

cross-sectional area occupied by fibres. In this sense, the

window size can be smaller than the fibre diameter df.

Histograms of the volume fraction of fibres vf for the

same 25 bands, width of each 0.04, are given in Fig. 6 for

various window sizes. The general trend with the decrease

in the window size is obvious: the distribution width

increases with respective flattening of histograms. Two

bounds for distributions of the volume fraction of fibres can

be introduced—maximal ( mf
max) and minimal ( mf

min). Their

graphs for the varying window size demonstrate two nat-

ural trends (Fig. 7). Firstly, for sufficiently small length

scales, these two bounds tend to respective mono-phase

asymptotes: mf
max ! 1 and mf

min ! 0 (i.e. the volume
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fraction of the matrix mm ! 1). Obviously, the former

limit occurs at the length scale below df due to different

shapes of the window and reinforcement’s cross-section.

The latter limit is attained at the higher length scale, even

larger than df, for the average volume fraction of fibres

mf
� �
¼ 0:55 of the studied carbon/epoxy composite. Sec-

ondly, both bounds should converge at high levels of the

length scale to the average value:

mf
min

mf
max

)

! mf
� �

:

This trend is also distinct (Fig. 7) but the full convergence

of the bounds is not reached even at the length scale of

115 lm.

Multifractal characterisation

The statistical analysis above has vividly demonstrated the

effect of the length scale on the type of randomness for

distributions of fibres in the unidirectional carbon/epoxy

composite. To quantify the spatial scaling of non-

uniform distributions, a multifractal formalism [14, 15] can

be used. For a stochastic distribution in some area, the local
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probability Pi introduced for a set of elements (boxes),

compactly covering this area and labelled by index i, scales

as:

Pi lð Þ / lai ; ð1Þ

where l is a length scale (box size) and ai is a respective

exponent (known also as singularity strength). The number

of elements with probability characterised by the same

exponent is linked to the length scale by the fractal

(Hausdorff) dimension f(a):

N að Þ / l�f að Þ: ð2Þ

Hence, f(a) describes the entire (finite) spectrum of

scaling exponents for non-uniform distributions. A direct

application of Eqs. (1) and (2) results in inaccurate esti-

mates for f(a) due to poor convergence [16], so another

procedure was suggested in [15, 17] based on parametric

presentations for f and a. A modification of this approach

for the case of a 2D distribution of fibres in a transverse

cross section has the following form:

a ¼ lim
l!0

1

log l

XNx

i¼1

XNz

j¼1

lij log nij; ð3Þ

f ¼ lim
l!0

1

log l

XNx

i¼1

XNz

j¼1

lij log lij; ð4Þ

where lij ¼ nq
ij

PNx

k¼1

PNz

m¼1

nq
km

� ��1

:

Here l is a length scale (box or window size),

M ¼ NxNz ¼ LxLz
�

l2 is a total number of boxes necessary

to cover the entire area Lx � Lz under study, nij ¼ Nij
�

Nf

is a relative number (probability) of (centroids of) fibres

within the box (i, j), Nf is the total number of fibres in the

analysed area.

The calculated multifractal spectrum f(a) for the carbon

fibre/epoxy unidirectional composite is presented in Fig. 8.

Apparently, the non-uniform distribution of fibres in the

area under study has a multifractal character since the

calculated graph demonstrates the properties of a multi-

fractal spectrum:

(1) It is a cup convex which lies under the bisector f = a.

(2) It has a single connection point with this bisector

where f¢(a) = 1. The value of f(a) in this point (for

q = 1) is called the informational dimension [18, 19].

(3) The maximum value of f(a) curve is the box-counting

dimension D of the geometric support of the measure:

D = 2 for a distribution over a 2D region.

The width of the multifractal spectrum is linked to the

extent of randomness of the distribution: with the increase

in uniformity of the distribution the spectrum tends to the

point f(D) = D, which is characteristic for total isotropy.

Effective properties and random fracture

The type of randomness in the spatial distribution of fibres,

analysed in the previous section, affects both the effective

properties of composites and evolution of failure in them.

Still, a majority of mechanical approaches uses the average

volume fraction of fibres mf
� �

as a single global parameter

in simulations of the behaviour of composite components

and structures. But local fluctuations in the level of mf lead

to non-uniformity of spatial fields of the Young’s moduli.

As a result, various parts of the same composite will be

exposed to different levels of stresses even under the

macroscopically uniform boundary conditions (in forces

and/or displacements). For instance, the effective axial

modulus of the composite �E11 can be presented as
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�E11 ¼ ERoM
11 þ DE11; ð5Þ

where ERoM
11 is the axial modulus calculated according to

the linear rule of mixtures, and DE11 is a non-linear term

that is negligibly small compared to ERoM
11 for a unidirec-

tional carbon/epoxy composite. After rearranging the

standard presentation of the linear rule of mixtures to the

form

ERoM
11 ¼ mf Ef

L � Em
� �

þ Em; ð6Þ

proportionality of the local magnitude of the elasticity

modulus to the local volume fraction of fibres becomes

obvious. In Eq. (6) Ef
L is the longitudinal module of fibres

(transversely isotropic in the case of carbon ones) and Em is

the Young’s modulus of the (isotropic) matrix.

A relatively slow convergence of mf
max and mf

min to the

average volume fraction of fibres mf
� �

with the increase in

the length scale (see Fig. 7) has severe implications for

numerical modelling of laminates. For instance, application

of 2D finite elements presupposes the use of at least several

nods along the transverse (through-thickness) direction

of a lamina. For a single ply’s thickness 120–150 lm,

the maximum element’s dimension should not exceed

30–50 lm. Hence, to reproduce adequately spatial (non-

uniaxial) stress distributions in such composites (especially

with a purpose to determine possible places for crack

generation) a model should account for a scatter in their

local properties.

A statistical analysis of the microscopic structure of the

carbon/epoxy composite can be used to estimate respective

bounds for the effective elastic moduli based on the scatter

in the volume fraction of fibres at the length scales, rele-

vant for macroscopic numerical modelling. Various

schemes can be used for this purpose for carbon/fibre

laminates, e.g., the self-consistent approach [20, 21], Mori–

Tanaka method [22, 23], concentric cylinder assemblage

model [24–26], or method of cells [27]. The last three

approaches give very close results for many fibre-rein-

forced laminates [28].

Table 1 demonstrates ratios of the maximum values of

the local effective elastic moduli to the minimum ones

obtained using the concentric cylinder assemblage model

for the studied case of the distribution of carbon fibres

(here �E22 and �G12 are the effective transverse modulus and

effective axial shear modulus, respectively). This estima-

tion demonstrates that the maximum values of the effective

axial moduli (both normal and shear) are 50% higher than

the minimum ones for the length scale of 50 lm. For the

length scale 30 lm these ratios exceed 2. The scatter in the

effective transverse modulus is lower, but still its maxi-

mum local values are 20%–40% higher than the minimum

ones.

Still, this randomness can play a significant part in

evolution of stresses and damage in fibrous composites as

was shown in [8, 9]. It is important not only for unidirec-

tional composites but also for cross-ply laminates exposed

to uniaxial loading. In this case an internal layer, formed by

90� plies, is loaded transversely and the major damage

mechanism at the initial stages of loading (either quasi-

static or tensile fatigue) is matrix cracking (see, e.g. [29]).

Experimental studies of matrix cracking in cross-ply

laminates under fatigue conditions manifest the stochastic

nature of the matrix-cracking process under fatigue

[30–32]: distances between two neighbouring matrix

cracks show a considerable—up to hundreds of per cen-

t—scatter. Various schemes and measures can be intro-

duced to quantify this randomness. The Weibull

distribution function could be used to characterise the set of

inter-crack distances for laminates at different stages of

their loading history [32, 33]. In [34] histograms for

numbers of matrix cracks in bands of a constant width, into

which the test specimen is divided, were used. The multi-

fractal formalism can also be used to characterise the type

of randomness in a matrix-crack set [35–37].

Comprehension of the stochastic character of matrix

cracking was reflected in different models, employing

various schemes to incorporate the material’s randomness.

Among the suggested approaches are the introduction of

the initial distribution of microcracks (flaws) [38], the use

of spatial strength distributions [31, 39], randomness in the

specific surface energy [40] and a more general phenom-

enological scheme based on the suggestion of the Itô sto-

chastic differential equation for fatigue-damage

accumulation within the concept of continuum damage

mechanics [41]. These schemes were used in a combination

with fracture mechanics or stress transfer rules (shear-lag

analysis). Analytical approaches can also be successfully

used to predict effective properties of laminates with non-

uniform crack distributions [42]. Stress distributions in

laminates for specific statistical realisations of crack sets

were analysed using either quasi-unidirectional shear stress

analysis [43] or 2D finite-element simulations [33].

To estimate the effect of randomness in microstructure

(i.e., in a spatial distribution of fibres in a transversal cross

section) of a [0n/90m/0n] laminate, a multi-scale lattice

model is used. Details of these model are discussed

elsewhere [36, 44], so its main features are only briefly

Table 1 Ratios of local effective elastic moduli of carbon-fibre

composite for various length scales

Length scale �Emax
11 =�Emin

11
�Emax

22 =�Emin
22

�Gmax
12 =�Gmin

12

30 lm 2.09 1.41 2.06

50 lm 1.47 1.21 1.53
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considered below. In contrast to schemes based on the

analysis of a representative volume element, here the entire

specimen (i.e. its longitudinal, through-thickness cross

section) is presented as a 2D lattice of non-overlapping

elements with properties varying from one element to

another due to differences in their microstructure. The

spatial non-uniformity in transverse stiffness of the 90�
layer is considered as the main source of the initial ran-

domness in material’s properties, affecting the matrix

cracking process. To adequately incorporate this feature

into the model, histograms of the volume fraction of fibres,

obtained from the microstructural analysis for the respec-

tive scale length that coincides with the elements’ dimen-

sions, are used to determine the type of randomness in

material’s local stiffness. The three-parameter Weibull

distribution with the cumulative distribution function is

used to describe this data:

F ð�CÞ ¼ 1� exp �
�C � c

g

� �b
" #

; ð7Þ

where �C ¼ Eij
90

�
Emin

90 is the ratio of the local transverse

modulus to its minimum value for the respective length

scale (elements’ dimensions). The obtained values of three

parameters of this distribution are b = 13.0, g = 0.395 and

c = 0.76. The graphical presentation of the function is

given in Fig. 9 together with the microstructure-based data.

The randomness in stiffness results in the non-uniform

distribution of longitudinal (in 0� direction) stresses even

under conditions of the uniform external load. The initial

local level (i.e., for a laminate without matrix cracks) of

this stress for elements can be calculated using the stress-

renormalizing coefficients [36, 44]. They reflect two fac-

tors affecting the local stress level: (a) the global transfer of

the external stress linked to the stacking order of the

laminate and (b) the local variations in the transverse

modulus.

The initial random stress causes spatially non-uniform

evolution of ensembles of microscopic defects. This pro-

cess can be described in terms of continuum damage

mechanics by means of introduction of the damage

parameter at the macroscopic level of the model. This

parameter reflects the deformational effect of evolution of

the ensemble of microscopic defects. Due to orientational

degeneracy of transverse cracks in relatively thin 90� layers

under an axial load, a scalar damage parameter can be

introduced with the damage evolution law for tensile fati-

gue in the form of a modified Coffin–Manson relation [44].

The damage parameter describes the macroscopic effect

of disperse damage; hence an additional condition is nec-

essary to determine generation of a macroscopic matrix

crack as a result of localisation of damage growth. In the

suggested model a transition from the disperse damage

accumulation to a local event of a macroscopic fracture is

linked to overcoming of the threshold damage value.

Attainment of this threshold in any element is considered to

be a moment of initiation of the transverse crack in a

respective part of the specimen. It is assumed that this

crack instantly crosses the entire thickness of the 90� layer;

this is confirmed by experimental observations (e.g., [29]).

Obviously, due to spatially non-uniform damage evolution

linked with randomness in stress levels, some of the ele-

ments, which demonstrate higher damage accumulation

rates, will attain the critical damage level earlier than

others.

Generation of the first (and subsequent) matrix crack

changes the stress field in the direct vicinity of the crack

due to formation of its stress-free surfaces—it is known as

a shielding effect. The effect of shielding on the axial stress

can be treated in different ways, with analytical schemes

being mainly based on variants of the shear-lag approach

[43, 45, 46]. To incorporate the shielding effect into the

suggested lattice model, an additional multiplier is intro-

duced into stress-renormalizing coefficients, which is

obtained by integration of the known analytical relations

for the elements of the lattice model. Calculations show

that generation of the matrix crack disturbs the stress dis-

tribution in [02/908/02] laminates as far as 2 mm from it.

With the magnitude of inter-crack spacing at the developed

stages of fatigue being considerably less than 1 mm, on

overlap of shielding zones from two neighbouring trans-

verse cracks significantly change the axial stress along the

entire spacing, and even the next-nearest neighbouring

cracks have a non-vanishing effect on the stress magnitude.

Hence, the model employs the superposition principle,

accounting for interacting shielding zones from multiple

matrix cracks.

In the case of laminates with a considerably thick 90�
layers, with matrix cracks growing through their thickness

during several loading cycles, matrix cracks disturb the
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Fig. 9 Cumulative distribution functions for relative transversal

modulus: analytical (Weibull) and microstructural data
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distribution of axial stresses not only in the longitudinal

direction but also in the transverse one. For instance, the

matrix crack that occupies not the entire thickness causes

considerable stress concentration near its tip. This could be

accounted by introduction of local stress-concentration

coefficients [44, 47] based on the expansion of fracture

mechanics to the case of lattice models. In such a case, the

interplay of two mechanisms—the initial spatial random-

ness and stress concentration—are responsible for the

direction of crack propagation. Under conditions of the

uniaxial tensile fatigue, the latter mechanism attempts to

straighten the crack in the direction, normal to that of

loading. Still, the material’s randomness could be respon-

sible for local crack deviations from the transverse direc-

tion in cases when elements in adjoining columns have

already accumulated a significant amount of damage.

In general terms, the suggested algorithm, which is

based on the local damage evolution relation, can be con-

sidered as a mapping of a dynamic matrix of stress-ren-

ormalizing coefficients onto the lattice of elements,

covering the 90� layer. Such a matrix incorporates effects

of the initial microstructural randomness as well as the

disperse evolution of damage and its transition to spatially

localised matrix cracking. This scheme could also be

expanded to include other failure mechanisms such as

delamination, provided that either analytical or numerical

estimates of their effects on stress distributions are avail-

able. There are obvious limits to the suggested approach: in

a case of a complicated type of loading determination of a

matrix of renormalizing stress coefficients will be infeasi-

ble. A principle advantage of the suggested scheme in

comparison with the finite-element method is its straight-

forward analysis of multiple cracking. In finite-element

schemes any newly formed transverse crack (or its incre-

mental growth in the case of thick 90� layers) should cause

the reformulation of the boundary-value problem due to the

formation of new traction-free surfaces.

An example of implementation of the suggested lattice

scheme is the study of matrix cracking in a specimen of the

[02/908/02] carbon/epoxy laminate. Figure 10 demonstrates

a distribution of matrix cracks in a specimen of T300-934

(axial length 50 mm) loaded by tensile fatigue with the

maximum cyclic stress 450 MPa at various stages of the

loading history. It is obvious that initial stages of matrix

cracking are characterised by a considerable extent of

randomness and a large scatter in the spacing length. With

a transition to an advanced fatigue stage, newly formed

transverse cracks tend to form closer to the mid-spacing.

Apparently, this is due to the mutual action of the shielding

zones from neighbouring cracks, with their length at this

stage exceeding the average spacing. Still, at all stages

there are cracks that are formed relatively close to existing

ones (see Fig. 10b, d). In this case, the effect of a large

local fluctuation in material’s properties is so strong that

even the local stress reduction due to the shielding effect

cannot prevent cracking.

The obtained results regarding the number and position

of matrix cracks in a studied specimen should be under-

stood in a probabilistic sense: the change in the initial

spatial distribution of the material’s properties will result in

another set of matrix cracks for the same loading condi-

tions and history. Hence, any result is a single statistical

realisation. Still, the multifractal analysis demonstrates

similarity of these statistical realisations (i.e. sets of

transverse cracks in specimens of the same structure) due

to the closeness of their multifractal spectra for similar

loading conditions.

Conclusions

Microstructural studies of carbon/epoxy laminate demon-

strate a non-uniform character of distributions of fibres in

transversal cross sections. Such non-uniformity can con-

siderably affect evolution of deformation and failure pro-

cesses in composites. Several parameters are employed to

characterise both the short-range randomness in the direct

vicinity of a fibre in terms of nearest-neighbour statistics

and medium- to long-range non-uniformity, using the

second-order singularity function and radial distribution

function. All the schemes show that the type of randomness

depends on the respective length scale (window size). The

fibres’ distribution also demonstrates some non-triv-

ial—multifractal—scaling. The fluctuating level of the

volume fraction of fibres results in the spatial non-unifor-

mity of the material’s local elastic parameters.

These microscopic studies, justifying and quantifying

the material’s stochasticity, have serious implications for

numerical modelling of laminates: any attempt to ade-

quately reproduce spatial (non-uniaxial) stress distributions

in such composites should account for a scatter in their

local properties. This is becoming even more important for

modelling of the damage and failure evolution, linked to a

transition from the disperse accumulation of microscopic

defects to localization of the fracture process in the form of

cracks and delamination zones.

Fig. 10 Positions of matrix cracks in [02/908/02] laminate at different

moments of loading history: (a) 100 cycles, (b) 4 · 103 cycles, (c)

105 cycles and (d) 2 · 105 cycles. Vertical to horizontal scale 2:1
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A lattice model that describes not a single representative

volume element but a macroscopic specimen, discretised

into elements with different properties, is used to imple-

ment such approaches. It allows a detailed analysis into the

effect of the composite’s randomness on its effective

properties and on development of matrix cracking under

tensile fatigue. The model bridges macro and micro levels

of description: microscopic processes are accounted for in

each element (as in a case of RVEs) in terms of the damage

parameter, while the macroscopic processes of stress

redistribution—due to the spatial randomness in the

material’s properties, structure of composites as well as

matrix cracking—are considered at the scale of the entire

specimen (lattice of elements). The set of matrix cracks,

obtained in simulations, is shown to be equivalent (both in

terms of statistics and scaling) to experimentally observed

sets of matrix cracks in carbon/epoxy laminates.

Interaction of microscopic randomness in distribution of

fibres with macroscopic redistributions of stresses due to

the increase in the number of transverse cracks under

tensile fatigue determines the character of matrix cracking:

from more random at its initial stage with relatively large

inter-crack spacing to more ordered at the advance stage.

The main ordering factor is the shielding effect causing

considerable reduction in longitudinal stress near cracks in

the 90� layer. With initial spacing considerably exceeding

zones of this effect, matrix cracking is governed mainly by

the spatial randomness in material’s properties. Increasing

the crack density results in the growth of the portion of the

specimen’s length occupied by shielding zones, limiting

the probable nucleation sites for new matrix cracks mainly

to parts of the specimen situated around the middles of

spacing between the neighbouring cracks.
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